Anaerobic choline metabolism in microcompartments promotes growth and swarming of P roteus mirabilis

نویسندگان

  • Eleanor Jameson
  • Tiantian Fu
  • Ian R. Brown
  • Konrad Paszkiewicz
  • Kevin J. Purdy
  • Stefanie Frank
  • Yin Chen
چکیده

Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of Gammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of Gammaproteobacteria. Using Proteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cutC gene, encoding a choline-trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cutC and subsequent complementation experiments. Proteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming-associated colony expansion of P. mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline-trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper-flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P. mirabilis and contributes to better understand the ecology of this bacterium in health and disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic Respiration Using a Complete Oxidative TCA Cycle Drives Multicellular Swarming in Proteus mirabilis

Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify th...

متن کامل

Arginine promotes Proteus mirabilis motility and fitness by contributing to conservation of the proton gradient and proton motive force

Swarming contributes to Proteus mirabilis pathogenicity by facilitating access to the catheterized urinary tract. We previously demonstrated that 0.1-20 mmol/L arginine promotes swarming on normally nonpermissive media and that putrescine biosynthesis is required for arginine-induced swarming. We also previously determined that arginine-induced swarming is pH dependent, indicating that the exte...

متن کامل

بررسی وجود باند ژن rsbA و تاثیر اسید میریستیک در بیماری زایی پروتئوس میرابیلیس جدا شده از عفونت های ادراری

Abstract Introduction: Bacteria communicate with each other by using molecular chemical signal, which are called autoinducer. By the increase of concentration of these signals, which is the result of increase cellular density, they coordinate gene expression in a microbial community. This process is called Quorum sensing. Considering the importance of urine tract infections prominent role of Qu...

متن کامل

First Isolation of carbon dioxide-dependent Proteus mirabilis from an uncomplicated cystitis patient with Sjögren's syndrome.

An uncomplicated cystitis caused by CO2-dependent Proteus mirabilis was observed in a 64-year-old Japanese female patient with Sjögren's syndrome in the Aomori Kyoritsu Hospital, Aomori, Japan. The initial P. mirabilis isolate came from a midstream urine specimen containing large numbers of Gram-negative, rod-shaped organisms that failed to grow on both Drigalski agar and sheep blood agar incub...

متن کامل

Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming.

Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016